Source code for medusa.plots.head_plots

"""

In this module, you will find some functions to represent connectivity graphs
and topographic plots over a 2D head model. Enjoy!

"""

# External imports
import warnings
import scipy.interpolate as sp
import matplotlib
from matplotlib.collections import LineCollection
from matplotlib import cm, colors
import numpy as np

# Medusa imports
from medusa.meeg import UnlocatedChannel


[docs]class TopographicPlot: """ Helper function to use a Topographic plot. Parameters ------------ axes : matplotlib.Axes.axes Matplotlib axes in which the head will be displayed into. channel_set : eeg_standards.EEGChannelSet EEG channel set. **kwargs : **dict() (Optional) Settings for the topoplot. Refer to plot_topography and plot_head to check the different parameters. """
[docs] def __init__(self, axes, channel_set, **kwargs): self.axes = axes self.channel_set = channel_set self.kwargs = kwargs # Init self.head_handles = plot_head( axes=self.axes, channel_set=self.channel_set, **self.kwargs ) self.plot_handles = None
[docs] def update(self, values): """ Use this function to update the topographic plot in real-time. Parameters ------------ values: list or numpy.ndarray Numpy array with the channel values. It must be of the same size as channels. """ if self.plot_handles is not None: _remove_handles(self.plot_handles) self.plot_handles = plot_topography( values=values, axes=self.axes, channel_set=self.channel_set, **self.kwargs )
[docs] def clear(self): """ This method clears all the handles. """ if self.plot_handles is not None: _remove_handles(self.plot_handles) self.plot_handles = None
# if self.head_handles is not None: # _remove_handles(self.head_handles)
[docs]class ConnectivityPlot: """ Helper function to use a Connectivity topographic plot. Parameters ------------ axes : matplotlib.Axes.axes Matplotlib axes in which the head will be displayed into. channel_set : eeg_standards.EEGChannelSet EEG channel set. **kwargs : **dict() (Optional) Settings for the topoplot. Refer to plot_topography and plot_head to check the different parameters. """
[docs] def __init__(self, axes, channel_set, **kwargs): self.axes = axes self.channel_set = channel_set self.kwargs = kwargs # Init self.head_handles = plot_head( axes=self.axes, channel_set=self.channel_set, **self.kwargs ) self.plot_handles = None
[docs] def update(self, adj_mat): """ Use this function to update the topographic plot in real-time. Parameters ------------ adj_mat: numpy.ndarray Numpy array with the connectivity values. It must be one of the following dimensions [n_channels, n_channels] """ if self.plot_handles is not None: _remove_handles(self.plot_handles) self.plot_handles = plot_connectivity( adj_mat=adj_mat, axes=self.axes, channel_set=self.channel_set, **self.kwargs )
[docs] def clear(self): """ This method clears all the handles. """ if self.plot_handles is not None: _remove_handles(self.plot_handles) self.plot_handles = None
# if self.head_handles is not None: # _remove_handles(self.head_handles)
[docs]def plot_connectivity(adj_mat, axes, channel_set, cmap="bwr", clim=None, **kwargs): """This function depicts a connectivity map over the desired channel locations. Parameters ---------- adj_mat: numpy.ndarray Numpy array with the connectivity values. It must be one of the following dimensions [n_channels, n_channels] axes : matplotlib.Axes.axes Matplotlib axes in which the head will be displayed into. channel_set : eeg_standards.EEGChannelSet EEG channel set. cmap : str (Optional) Matplotlib colormap. clim : list or None (Optional) Color bar limits. Index 0 contain the lower limit, whereas index 1 must contain the upper limit. if None, min and max values are used. Returns ------- handles : dict Dict with all the handles that have been added to the axes. """ # Check adjacency matrix dimensions if adj_mat.shape[0] != len(channel_set.channels): raise Exception('Adjacency matrix must have the shape ' '[n_channels, n_channels]') # Init handles handles = dict() # Get connectivity values values_indx = np.triu_indices(adj_mat.shape[0],1) conn_values = adj_mat[values_indx] # Map connectivity values to colors if clim is None: clim = [conn_values.min(), conn_values.max()] norm = colors.Normalize(vmin=clim[0], vmax=clim[1], clip=True) mapper = cm.ScalarMappable(norm=norm, cmap=cmap) conn_colors = mapper.to_rgba(conn_values) # Connectivity line widths widths = 3 * (np.ones(len(conn_values)) * np.abs(conn_values) - clim[0])/\ (clim[1] - clim[0]) ch_x, ch_y = __get_cartesian_coordinates(channel_set) edges = [] for indx, chx in enumerate(ch_x): for second_indx in range(indx + 1, len(ch_x)): edges.append( [[chx, ch_y[indx]], [ch_x[second_indx], ch_y[second_indx]]]) edges_collection = LineCollection(edges, colors=conn_colors, linewidths=widths) handles['lines'] = axes.add_collection(edges_collection) return handles
[docs]def plot_topography(values, axes, channel_set, extra_radius=0.29, interp_neighbors=3, interp_points=500, interp_contour_width=0.8, cmap="YlGnBu_r", clim=None, **kwargs): """ This function depicts a topographic map of the scalp over the desired channel locations. Parameters ---------- values: list or numpy.ndarray Numpy array with the channel values. It must be of the same size as channels. axes : matplotlib.Axes.axes Matplotlib axes in which the head will be displayed into. channel_set : eeg_standards.EEGChannelSet EEG channel set extra_radius : float (Optional) Extra radius of the plot surface. interp_neighbors : int (Optional) Number of nearest neighbors for interpolation. interp_points: int (Optional) No. interpolation points. The lower N, the lower resolution and faster computation (default: 500) interp_contour_width: float or None (Optional) Line width of the contour lines. If None, no contour lines will be plotted (default: 0.8). cmap : str (Optional) Matplotlib colormap. clim : tuple or None (Optional) Color bar limits. Index 0 contain the lower limit, whereas index 1 must contain the upper limit. if None, min and max values are used. Returns ------- handles : dict Dict with all the handles that have been added to the axes. """ # Check values dimensions values = np.array(values) if values.size != len(channel_set.channels): raise Exception('Parameters ch_list and values must have the same ' 'size') if len(values.shape) == 1: # Reshape to the correct dimensions [1 x len(ch_list)] values = values.reshape(1, -1) elif len(values.shape) == 2: # Reshape to the correct dimensions [1 x len(ch_list)] values = np.squeeze(values).reshape(1, -1) else: raise Exception('The dimensions of the parameter are not correct') # Init handles handles = dict() # Create points out of the head to get a natural interpolation r_ext_points = 1.5 # Radius of the virtual electrodes no_ve = 16 # No. virtual electrodes add_x, add_y = __pol2cart(r_ext_points * np.ones((1, no_ve)), np.arange(0, 2 * np.pi, 2 * np.pi / no_ve)) linear_grid = np.linspace(-r_ext_points, r_ext_points, interp_points) interp_x, interp_y = np.meshgrid(linear_grid, linear_grid) # Get cartesian coordinates ch_x, ch_y = __get_cartesian_coordinates(channel_set) # Create the mask mask_radius = np.max(np.sqrt(ch_x**2+ch_y**2)) + extra_radius mask = (np.sqrt(np.power(interp_x, 2) + np.power(interp_y, 2)) < mask_radius) # Interpolate the data ch_x = ch_x.reshape(ch_x.shape[0], 1) ch_y = ch_y.reshape(ch_y.shape[0], 1) add_values = __compute_nearest_values(np.hstack((add_x.T, add_y.T)), np.hstack((ch_x, ch_y)), values, interp_neighbors) grid_points = np.hstack((np.vstack((ch_x, add_x.T)), np.vstack((ch_y, add_y.T)))) grid_values = np.vstack((values.T, add_values)) interp_values = np.vstack((interp_x.ravel(), interp_y.ravel())).T interp_z = sp.griddata(grid_points, grid_values, interp_values, 'cubic') # Mask the data interp_z = np.reshape(interp_z, (interp_points, interp_points)) interp_z[~mask] = float('nan') # Plotting the final interpolation color_mesh = axes.pcolormesh(interp_x, interp_y, interp_z, cmap=cmap) handles['color-mesh'] = color_mesh if clim is not None: color_mesh.set_clim(clim[0], clim[1]) # Plotting the contour if interp_contour_width is not None: contour = axes.contour(interp_x, interp_y, interp_z, alpha=1, colors='0.2', linewidths=interp_contour_width) handles['contour'] = contour return handles
[docs]def plot_head(axes, channel_set, head_radius=0.76266, head_line_width=4.0, head_skin_color="#E8BEAC", plot_channel_labels=False, plot_channel_points=True, channel_radius_size=None, **kwargs): """This function depicts a two-dimensional head diagram. Parameters ---------- axes : matplotlib.Axes.axes Matplotlib axes in which the head will be displayed into. channel_set : eeg_standards.EEGChannelSet EEG channel set. head_radius : float (Optional) Head radius. Default is 0.7266, coinciding with FPz. The nasion and inion are located at r=1.0 head_line_width : float (Optional) Line width for the head, ears and nose. head_skin_color : basestring or None (Optional) If None, skin will be transparent. Otherwise, skin will be colored. plot_channel_labels : bool (Optional) Boolean that controls if the channel labels should be plotted (default: False) plot_channel_points : bool (Optional) Boolean that controls if the channel points should be plotted (default: True) channel_radius_size : float (Optional) Channels can be surrounded by a circunference to ease their visualization. Use this parameter to control the radius of the circle. If 0, no circle will be used; if None, an automatic value will be computed considering the minimum distance between channels (default: None) Returns ------- handles : dict Dict with all the handles that have been added to the axes """ # Check channels errors if channel_set.dim != '2D': raise ValueError('The channel set must have 2 dimensions') # Init handles handles = dict() # Compute the cartesian coordinates of each channel ch_x, ch_y = __get_cartesian_coordinates(channel_set) # Plotting the nose head_rho = head_radius nt = 0.15 # Half-nose width (in percentage of pi/2) nr = 0.22 # Nose length (in radius units) nose_rho = [head_rho, head_rho + head_rho * nr, head_rho] nose_theta = [(np.pi / 2) + (nt * np.pi / 2), np.pi / 2, (np.pi / 2) - (nt * np.pi / 2)] nose_x = nose_rho * np.cos(nose_theta) nose_y = nose_rho * np.sin(nose_theta) handle = axes.plot(nose_x, nose_y, 'k', linewidth=head_line_width) handles['nose-line'] = handle[0] if head_skin_color is not None: handle = axes.fill(nose_x, nose_y, 'k', facecolor=head_skin_color, edgecolor='k', linewidth=head_line_width) handles['nose-fill'] = handle[0] # Plotting the ears as ellipses interp_points = 500 ellipse_a = 0.08 # Horizontal eccentricity ellipse_b = 0.16 # Vertical eccentricity ear_angle = 0.9 * np.pi / 8 # Mask angle offset = 0.058 * head_radius # Ear offset ear_theta_right = np.linspace(-np.pi / 2 - ear_angle, np.pi / 2 + ear_angle, interp_points) ear_theta_left = np.linspace(np.pi / 2 - ear_angle, 3 * np.pi / 2 + ear_angle, interp_points) ear_x_right = __ear_rho(ear_theta_right, ellipse_a, ellipse_b) * \ np.cos(ear_theta_right) ear_y_right = __ear_rho(ear_theta_right, ellipse_a, ellipse_b) * \ np.sin(ear_theta_right) ear_x_left = __ear_rho(ear_theta_left, ellipse_a, ellipse_b) * \ np.cos(ear_theta_left) ear_y_left = __ear_rho(ear_theta_left, ellipse_a, ellipse_b) * \ np.sin(ear_theta_left) handle = axes.plot(ear_x_right + head_rho + offset, ear_y_right, 'k', linewidth=head_line_width) handles['right-ear-line'] = handle[0] handle = axes.plot(ear_x_left - head_rho - offset, ear_y_left, 'k', linewidth=head_line_width) handles['left-ear-line'] = handle[0] # Plotting the head limits as a circle head_theta = np.linspace(0, 2 * np.pi, interp_points) head_x = head_rho * np.cos(head_theta) head_y = head_rho * np.sin(head_theta) handle = axes.plot(head_x, head_y, 'k', linewidth=head_line_width) handles['head-line'] = handle[0] if head_skin_color is not None: handle = axes.fill(head_x, head_y, facecolor=head_skin_color, edgecolor='k', linewidth=head_line_width) handles['head-fill'] = handle[0] if head_skin_color is not None: handle = axes.fill(ear_x_right + head_rho + offset, ear_y_right, facecolor=head_skin_color, edgecolor='k', linewidth=head_line_width) handles['right-ear-fill'] = handle[0] handle = axes.fill(ear_x_left - head_rho - offset, ear_y_left, facecolor=head_skin_color, edgecolor='k', linewidth=head_line_width) handles['left-ear-fill'] = handle[0] # Compute optimal minimum distance between channels if channel_radius_size is None: dist_matrix = channel_set.compute_dist_matrix() dist_matrix.sort() min_dist = dist_matrix[:, 1].min() # Adjust radius if isinstance(channel_set.montage, str): if channel_set.montage == '10-05': M = 345 elif channel_set.montage == '10-10': M = 71 elif channel_set.montage == '10-20': M = 21 elif isinstance(channel_set.montage, dict) or channel_set.montage\ is None: M = channel_set.n_cha percentage = len(channel_set.channels) * (0.25 / (M - 2)) + \ 0.25 * ((M - 4) / (M - 2)) channel_radius_size = min_dist * percentage # Plot channels as circunferences if channel_radius_size != 0: handles['ch-contours'] = list() for ch_idx in range(len(channel_set.channels)): patch = matplotlib.patches.Circle( (ch_x[ch_idx], ch_y[ch_idx]), radius=channel_radius_size, facecolor='#ffffff', edgecolor=None, alpha=0.4, zorder=10) handle = axes.add_patch(patch) handles['ch-contours'].append(handle) # Plot channels points if plot_channel_points: handle = axes.scatter(ch_x, ch_y, head_line_width*3.5, facecolors='w', edgecolors='k', zorder=10) handles['ch-points'] = handle # Plot channels labels if plot_channel_labels: handles['ch-labels'] = list() for t in range(len(channel_set.channels)): handle = axes.text(ch_x[t] + 0.01, ch_y[t] - 0.85 * channel_radius_size, channel_set.channels[t]['label'], fontsize=head_line_width*2, color='w', zorder=11) handles['ch-labels'].append(handle) # Last considerations plot_lim = max(head_radius + 0.2, np.max(np.sqrt(ch_x**2 + ch_y**2)) + 0.2) axes.set_xlim([-plot_lim, plot_lim]) axes.set_ylim([-plot_lim, plot_lim]) axes.set_aspect('equal', 'box') axes.set_yticklabels([]) axes.set_xticklabels([]) for side in ['top', 'right', 'bottom', 'left']: axes.spines[side].set_visible(False) axes.tick_params(axis='both', which='both', bottom=False, left=False) axes.set_facecolor('#00000000') # Transparent return handles
def __ear_rho(ear_theta, ellipse_a, ellipse_b): """ This function computes the ear coordinates according to an ellipse. """ d1 = np.power(np.cos(ear_theta), 2) / np.power(ellipse_a, 2) d2 = np.power(np.sin(ear_theta), 2) / np.power(ellipse_b, 2) return 1 / np.sqrt(d1 + d2) def __pol2cart(rho, phi): """This function converts polar coordinates to cartesian coordinates. Parameters ---------- rho: Array of radii phi: Array of angles """ x = rho * np.cos(phi) y = rho * np.sin(phi) return x, y def __compute_nearest_values(coor_add, coor_neigh, val_neigh, k): """ This function computes the mean values of the k-nearest neighbors. Parameters ---------- coor_add: XY coordinates of the virtual electrodes. coor_neigh: XY coordinates of the real electrodes. val_neigh: Values of the real electrodes. k: Number of neighbors to consider. """ add_val = np.empty((len(coor_add), 1)) L = len(coor_add) for i in range(L): # Distances between the added electrode and the original ones target = coor_add[i, :] * np.ones((len(coor_neigh), 2)) d = np.sqrt(np.sum(np.power(target - coor_neigh, 2), axis=1)) # K-nearest neighbors idx = np.argsort(d) sel_idx = idx[1:1 + k] # Final value as the mean value of the k-nearest neighbors add_val[i] = np.mean(val_neigh[0, sel_idx]) return add_val def __get_cartesian_coordinates(channel_set): # Restructure the channels list to treat it more easily if channel_set.coord_system == 'spherical': radius = list() theta = list() for c in channel_set.channels: try: radius.append(c['r']) theta.append(c['theta']) except KeyError as e: raise UnlocatedChannel(c) radius, theta = np.array(radius),np.array(theta) ch_x, ch_y = __pol2cart(radius, theta) else: ch_x, ch_y = list(),list() for c in channel_set.channels: try: ch_x.append(c['x']) ch_y.append(c['y']) except KeyError as e: raise UnlocatedChannel(c) ch_x,ch_y = np.array(ch_x),np.array(ch_y) return ch_x, ch_y def _remove_handles(handles): """ Utility function to remove all matplotlib handles. """ for h in handles.values(): if isinstance(h, list): for h2 in h: h2.remove() else: if isinstance(h, matplotlib.contour.QuadContourSet): for h2 in h.collections: h2.remove() else: h.remove() if __name__ == "__main__": """ Example of use: """ from matplotlib import pyplot as plt from medusa.meeg.meeg import EEGChannelSet from medusa.plots.head_plots import * import numpy as np # Set channel set channel_set = EEGChannelSet() channel_set.set_standard_montage(montage='10-20') # Initialize figure fig = plt.figure() fig.add_subplot(1, 1, 1) # # Plot topography # values = np.random.random(channel_set.n_cha) # topo = TopographicPlot(axes=fig.axes[0], channel_set=channel_set) # topo.update(values=values) # Plot connectivity adj_mat = np.random.randn(channel_set.n_cha, channel_set.n_cha) conn = ConnectivityPlot(axes=fig.axes[0], channel_set=channel_set) conn.update(adj_mat=adj_mat) # Show figure fig.tight_layout() fig.set_alpha(0) fig.show()