Source code for medusa.plots.mi_plots

# -*- coding: utf-8 -*-
"""
Created on Fri Dec 20 15:34:18 2019
Edited on Mon Jun 13 10:00:00 2022

@author: VICTOR
@editor: Sergio Pérez-Velasco
"""
from medusa import frequency_filtering as ff
from medusa import spatial_filtering as sf
# from medusa.storage.medusa_data import MedusaData
from medusa.components import Recording
# from medusa.bci.mi_feat_extraction import extract_mi_trials_from_midata
from medusa.local_activation import statistics
# from medusa.bci.mi_models import MIModelSettings
from medusa.plots import topographic_plots
from medusa.bci.mi_paradigms import StandardPreprocessing, \
    StandardFeatureExtraction, MIDataset

import numpy as np
from scipy.ndimage import uniform_filter1d
import matplotlib.pyplot as plt
import scipy.signal as scisig


[docs]class MIPlots():
[docs] def __init__(self, fir_order=1000, fir_cutoff=(5, 35), fir_btype="bandpass", fir_method="filtfilt", w_baseline_t=(-1000, 0), w_epoch_t=(-1000, 6000), norm="z", baseline_mode="trial", target_fs=None): self.fir_order = fir_order self.fir_cutoff = fir_cutoff self.fir_btype = fir_btype self.fir_method = fir_method self.w_baseline_t = w_baseline_t self.w_epoch_t = w_epoch_t self.norm = norm self.target_fs = target_fs self.baseline_mode = baseline_mode # generated self.dataset = None self.fs = None self.channel_set = None self.fir = None self.features = None self.track_info = None self.set_sizes()
[docs] def set_sizes(self, label_size=6, axes_size=5, line_width=1): self.label_size = label_size self.axes_size = axes_size self.line_width = line_width
[docs] def extract_features(self, files): # Load files rec = Recording.load(files[0]) self.fs = rec.eeg.fs self.channel_set = rec.eeg.channel_set self.dataset = MIDataset(channel_set=self.channel_set, fs=self.fs, experiment_att_key='midata', biosignal_att_key='eeg', experiment_mode='train') for file in files: self.dataset.add_recordings(Recording.load(file)) # Pre-processing self.fir = ff.FIRFilter(order=self.fir_order, cutoff=self.fir_cutoff, btype=self.fir_btype, filt_method=self.fir_method) self.fir.fit(fs=self.fs) for rec in self.dataset.recordings: eeg = getattr(rec, self.dataset.biosignal_att_key) eeg.signal = self.fir.transform(signal=eeg.signal) eeg.signal = sf.car(signal=eeg.signal) setattr(rec, self.dataset.biosignal_att_key, eeg) # Feature extraction feature_extractor = StandardFeatureExtraction( w_epoch_t=self.w_epoch_t, target_fs=self.target_fs, baseline_mode=self.baseline_mode, w_baseline_t=self.w_baseline_t, norm=self.norm) self.features, self.track_info = feature_extractor.transform_dataset( dataset=self.dataset)
[docs] def plot_spectrogram(self, ch_to_plot, axs_to_plot=None, welch_seg_len_pct=50, welch_overlap_pct=75, mov_mean_hz=0): if self.dataset is None: raise Exception("Call MiPlots._extract_features() before plotting!") if axs_to_plot is None: axs_to_plot = list() for c in ch_to_plot: fig = plt.figure(figsize=(5, 5), dpi=300) gs = fig.add_gridspec(2, 1, wspace=0.2, hspace=0.2, height_ratios=[1, 0.2]) axs_to_plot.append({'freq': fig.add_subplot(gs[0, 0]), 'r2': fig.add_subplot(gs[1, 0])}) labels = self.track_info["mi_labels"] labels_info = self.track_info["mi_labels_info"][0] # Compute the spectrogram trials_specgram = None new_fs = self.fs if self.target_fs is None else self.target_fs for t in self.features: welch_seg_len = np.round( welch_seg_len_pct / 100 * t.shape[0]).astype(int) welch_overlap = np.round( welch_overlap_pct / 100 * welch_seg_len).astype(int) t_freqs, t_times, t_sxx = scisig.spectrogram( t, fs=new_fs, axis=0, nperseg=int(256 / 2) ) t_sxx = np.expand_dims(t_sxx, axis=0) trials_specgram = np.concatenate((trials_specgram, t_sxx), axis=0) \ if trials_specgram is not None else t_sxx # Separate the classes trials_specgram_c1 = trials_specgram[labels == 0, :, :, :] trials_specgram_c2 = trials_specgram[labels == 1, :, :, :] # Plot ranges lims = [0, new_fs / 2] if self.fir_btype == 'bandpass': lims = [self.fir_cutoff[0], self.fir_cutoff[1]] elif self.fir_btype == 'highpass': lims[0] = self.fir_cutoff[0] elif self.fir_btype == 'lowpass': lims[1] = self.fir_cutoff[1] # Plot lcha = self.dataset.channel_set.l_cha for n in range(len(ch_to_plot)): if ch_to_plot[n] not in lcha: raise ValueError('Channel ' + ch_to_plot[n] + ' is missing!') i = lcha.index(ch_to_plot[n]) # Signed r2 temp_c1 = np.squeeze(trials_specgram_c1[:, :, i, :]) # obs, t, f temp_c2 = np.squeeze(trials_specgram_c2[:, :, i, :]) # obs, t, f temp_r2 = statistics.signed_r2(temp_c1, temp_c2, signed=True, axis=0) with plt.style.context('seaborn'): # Averaged curves ax1 = axs_to_plot[n] ax1.minorticks_on() ax1.pcolormesh(t_times, t_freqs, temp_r2, cmap='RdBu_r') # ax1.grid(b=True, which='minor', color='#ededed', linestyle='--') # ax1.grid(b=True, which='major') # ax1.plot(freqs, m_psd_c1[:, i], linewidth=self.line_width, # color=[255 / 255, 174 / 255, 0 / 255]) # ax1.plot(freqs, m_psd_c2[:, i], linewidth=self.line_width, # color=[24 / 255, 255 / 255, 73 / 255]) ax1.set_ylim(lims) ax1.set_xlim((self.w_baseline_t[1] / 1000, self.w_epoch_t[1] / 1000)) ax1.set_title(ch_to_plot[n], fontsize=self.label_size) ax1.set_ylabel(r'Frequency (Hz)', fontsize=self.label_size) ax1.set_xlabel(r'Time (s)', fontsize=self.label_size) ax1.tick_params(axis='x', labelsize=self.axes_size) ax1.tick_params(axis='y', labelsize=self.axes_size) return axs_to_plot
[docs] def plot_erd_ers_freq(self, ch_to_plot, axs_to_plot=None, welch_seg_len_pct=50, welch_overlap_pct=75, mov_mean_hz=0): if self.dataset is None: raise Exception("Call MiPlots._extract_features() before plotting!") if axs_to_plot is None: axs_to_plot = list() for c in ch_to_plot: fig = plt.figure(figsize=(5, 5), dpi=300) gs = fig.add_gridspec(2, 1, wspace=0.2, hspace=0.2, height_ratios=[1, 0.2]) axs_to_plot.append({'freq': fig.add_subplot(gs[0, 0]), 'r2': fig.add_subplot(gs[1, 0])}) labels = self.track_info["mi_labels"] labels_info = self.track_info["mi_labels_info"][0] # Compute the PSD trials_psd = None new_fs = self.fs if self.target_fs is None else self.target_fs for t in self.features: # Compute PSD of the trial welch_seg_len = np.round( welch_seg_len_pct / 100 * t.shape[0]).astype(int) welch_overlap = np.round( welch_overlap_pct / 100 * welch_seg_len).astype(int) t_freqs, t_psd = scisig.welch(t, fs=new_fs, nperseg=welch_seg_len, noverlap=welch_overlap, nfft=welch_seg_len, axis=0) # Concatenate t_psd = t_psd.reshape(1, t_psd.shape[0], t_psd.shape[1]) trials_psd = np.concatenate((trials_psd, t_psd), axis=0) if \ trials_psd is not None else t_psd # Separate the classes trials_psd_c1 = trials_psd[labels == 0, :, :] trials_psd_c2 = trials_psd[labels == 1, :, :] # Signed r2 trials_r2 = statistics.signed_r2(trials_psd_c1, trials_psd_c2, signed=False, axis=0) if mov_mean_hz != 0: size = int(trials_psd_c1.shape[1] / (self.fir_cutoff[1] - self.fir_cutoff[0]) * mov_mean_hz) trials_r2 = uniform_filter1d(trials_r2, size, axis=0, mode='nearest') # Mean PSD m_psd_c1 = np.mean(trials_psd_c1, axis=0) m_psd_c2 = np.mean(trials_psd_c2, axis=0) # Plot ranges freqs = np.linspace(0, new_fs / 2, len(m_psd_c1)) lims = [0, new_fs / 2] if self.fir_btype == 'bandpass': lims = [self.fir_cutoff[0], self.fir_cutoff[1]] elif self.fir_btype == 'highpass': lims[0] = self.fir_cutoff[0] elif self.fir_btype == 'lowpass': lims[1] = self.fir_cutoff[1] # Plot lcha = self.dataset.channel_set.l_cha for n in range(len(ch_to_plot)): if ch_to_plot[n] not in lcha: raise ValueError('Channel ' + ch_to_plot[n] + ' is missing!') i = lcha.index(ch_to_plot[n]) with plt.style.context('seaborn'): # Averaged curves ax1 = axs_to_plot[n]['freq'] ax1.minorticks_on() ax1.grid(b=True, which='minor', color='#ededed', linestyle='--') ax1.grid(b=True, which='major') ax1.plot(freqs, m_psd_c1[:, i], linewidth=self.line_width, color=[255 / 255, 174 / 255, 0 / 255]) ax1.plot(freqs, m_psd_c2[:, i], linewidth=self.line_width, color=[24 / 255, 255 / 255, 73 / 255]) ax1.set_xlim(lims) ax1.set_title(ch_to_plot[n], fontsize=self.label_size) ax1.set_ylabel(r'PSD ($uV^2/Hz$)', fontsize=self.label_size) ax1.legend([labels_info[str(0)], labels_info[str(1)]], fontsize=self.label_size) ax1.tick_params(axis='x', labelsize=self.axes_size) ax1.tick_params(axis='y', labelsize=self.axes_size) # Signed-r2 ax2 = axs_to_plot[n]['r2'] ax2.pcolormesh(freqs, range(2), np.tile(trials_r2[:, i], reps=[2, 1]), cmap='YlOrRd', vmin=0) ax2.set_xlim(lims) ax2.set_ylabel('$r^2$', fontsize=self.label_size) ax2.set_xlabel('Frequency (Hz)', fontsize=self.label_size) ax2.tick_params(axis='x', labelsize=self.axes_size) ax2.tick_params(axis='y', labelsize=self.axes_size) return axs_to_plot
[docs] def plot_erd_ers_time(self): pass
[docs] def plot_erd_ers_r2_topo(self, ch_to_plot, ax_to_plot=None, welch_seg_len_pct=50, welch_overlap_pct=75): if self.dataset is None: raise Exception("Call MiPlots._extract_features() before plotting!") if len(ch_to_plot) != 2: raise Exception("We need exactly two channels to compute r2 topo!") if ax_to_plot is None: ax_to_plot = list() for c in ch_to_plot: fig = plt.figure(figsize=(5, 5), dpi=300) ax_to_plot = fig.add_subplot(111) lcha = self.dataset.channel_set.l_cha labels = self.track_info["mi_labels"] labels_info = self.track_info["mi_labels_info"][0] # Compute the PSD trials_psd = None new_fs = self.fs if self.target_fs is None else self.target_fs for t in self.features: # Compute PSD of the trial welch_seg_len = np.round( welch_seg_len_pct / 100 * t.shape[0]).astype(int) welch_overlap = np.round( welch_overlap_pct / 100 * welch_seg_len).astype(int) t_freqs, t_psd = scisig.welch(t, fs=new_fs, nperseg=welch_seg_len, noverlap=welch_overlap, nfft=welch_seg_len, axis=0) # Concatenate t_psd = t_psd.reshape(1, t_psd.shape[0], t_psd.shape[1]) trials_psd = np.concatenate((trials_psd, t_psd), axis=0) if \ trials_psd is not None else t_psd # Separate the classes trials_psd_c1 = trials_psd[labels == 0, :, :] trials_psd_c2 = trials_psd[labels == 1, :, :] # Signed r2 trials_r2 = statistics.signed_r2(trials_psd_c1, trials_psd_c2, signed=True, axis=0) trials_r2 = np.mean(trials_r2, axis=0) max_r2 = np.abs(np.max(trials_r2.flatten())) # Topoplot values = trials_r2.reshape(1, len(lcha)) _, ax_to_plot, p_interp = topographic_plots.plot_topography( self.dataset.channel_set, values, clim=(-max_r2, max_r2), cmap='RdBu_r', linewidth=self.line_width * 2, head_radius=1.0, axes=ax_to_plot, show_colorbar=False, show=False, plot_skin_in_color=True) ax_to_plot.set_title("Signed $r^2$ (%s)" % ' vs. '.join(ch_to_plot), fontsize=self.label_size) return ax_to_plot, p_interp
def _extract_erd_ers_features(files, ch_to_plot, order=1000, cutoff=[5, 35], btype='bandpass', temp_filt_method='filtfilt', w_epoch_t=(-1000, 6000), target_fs=None, baseline_mode='trial', w_baseline_t=(-1000, 0), norm='z'): saved_args = locals() del saved_args['files'] del saved_args['ch_to_plot'] # Load files rec = Recording.load(files[0]) fs = rec.eeg.fs channel_set = rec.eeg.channel_set dataset = MIDataset(channel_set=channel_set, fs=rec.eeg.fs, experiment_att_key='midataold', biosignal_att_key='eeg', experiment_mode='train') for file in files: dataset.add_recordings(Recording.load(file)) # Pre-processing fir = ff.FIRFilter(order=order, cutoff=cutoff, btype=btype, filt_method=temp_filt_method) fir.fit(fs=fs) for rec in dataset.recordings: eeg = getattr(rec, dataset.biosignal_att_key) eeg.signal = fir.transform(signal=eeg.signal) eeg.signal = sf.car(signal=eeg.signal) setattr(rec, dataset.biosignal_att_key, eeg) # Feature extraction feature_extractor = StandardFeatureExtraction(w_epoch_t=w_epoch_t, target_fs=target_fs, baseline_mode=baseline_mode, w_baseline_t=w_baseline_t, norm=norm) features, track_info = feature_extractor.transform_dataset(dataset=dataset) lcha = dataset.channel_set.l_cha return features, track_info, fs, lcha, channel_set, saved_args
[docs]def plot_erd_ers_time(files, ch_to_plot, features=None, track_info=None, fs=None, lcha=None, channel_set=None, mov_mean_ms=1000, **kwargs): """Plotting function of ERD/ERS from motor imagery runs of MEDUSA. Parameters ---------- files: list List of paths pointing to MI files. ch_to_plot: list List with the labels of the channels to plot """ for key, value in kwargs.items(): globals()[key] = value # Extract only if required if features is None: features, track_info, fs, lcha, channel_set, saved_args = \ _extract_erd_ers_features( files, ch_to_plot, **kwargs ) for key, value in saved_args.items(): globals()[key] = value labels = track_info["mi_labels"] # todo: hardcoded labels_info = track_info["mi_labels_info"][0] new_fs = fs if target_fs is None else target_fs # # Baseline parameters t_baseline = [w_baseline_t[0] - w_epoch_t[0], w_baseline_t[1] - w_epoch_t[0]] idx_baseline = np.round(np.array(t_baseline) * new_fs / 1000).astype(int) # Separate the classes trials_c1 = features[labels == 0, :, :] trials_c2 = features[labels == 1, :, :] # Compute the average power p_c1 = np.power(trials_c1, 2) p_c2 = np.power(trials_c2, 2) p_c1_avg = np.mean(p_c1, axis=0) p_c2_avg = np.mean(p_c2, axis=0) # Compute the reference power for each channel r_c1_mean = np.mean(p_c1_avg[idx_baseline[0]:idx_baseline[1], :], axis=0) r_c2_mean = np.mean(p_c2_avg[idx_baseline[0]:idx_baseline[1], :], axis=0) # Compute ERD/ERS ERDERS_c1 = 100 * (p_c1_avg - r_c1_mean) / r_c1_mean ERDERS_c2 = 100 * (p_c2_avg - r_c2_mean) / r_c2_mean # TODO: Cambiar por https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.uniform_filter1d.html ERDERS_c1_smooth = uniform_filter1d(ERDERS_c1, int(np.floor( mov_mean_ms * new_fs / 1000)), axis=0, mode='mirror') ERDERS_c2_smooth = uniform_filter1d(ERDERS_c2, int(np.floor( mov_mean_ms * new_fs / 1000)), axis=0, mode='mirror') # Signed r2 for the power p_c1_marg = 100 * (p_c1 - r_c1_mean / p_c1.shape[0]) / r_c1_mean p_c2_marg = 100 * (p_c2 - r_c2_mean / p_c2.shape[0]) / r_c2_mean trials_r2 = statistics.signed_r2(p_c1_marg, p_c2_marg, signed=False, axis=0) if mov_mean_ms != 0: trials_r2 = uniform_filter1d(trials_r2, int(np.floor(mov_mean_ms * new_fs / 1000)), axis=0, mode='mirror') # Plotting times = np.linspace(w_epoch_t[0], w_epoch_t[1], ERDERS_c1_smooth.shape[0]) # Plot left = 0.1 bottom = 0 width = 0.8 height_psd = 0.6 height_r2 = 0.06 height_cbar = 0.06 gap = 0.12 figs = list() for n in range(len(ch_to_plot)): fig = plt.figure() ax1 = fig.add_axes( [left, bottom + height_r2 + height_cbar + gap, width, height_psd], xticklabels=[]) ax2 = fig.add_axes([left, bottom + height_cbar + gap, width, height_r2], yticklabels=[]) if ch_to_plot[n] not in ch_to_plot: raise ValueError('Channel ' + ch_to_plot[n] + ' is missing!') i = lcha.index(ch_to_plot[n]) # ERD/ERS(%) ax1.minorticks_on() ax1.grid(visible=True, which='minor', color='#ededed', linestyle='--') ax1.grid(visible=True, which='major') ax1.axvline(x=0, color='k', linestyle='--', label='_nolegend_') ax1.axvspan(w_baseline_t[0], w_baseline_t[1], alpha=0.1, facecolor='gray', label='_nolegend_') ax1.plot(times, ERDERS_c1_smooth[:, i], linewidth=2, color=[255 / 255, 174 / 255, 0 / 255]) ax1.plot(times, ERDERS_c2_smooth[:, i], linewidth=2, color=[24 / 255, 255 / 255, 73 / 255]) ax1.set_xlim(w_epoch_t) ax1.title.set_text(ch_to_plot[n]) ax1.set_ylabel(r'ERD/ERS (%)') ax1.legend([labels_info[str(0)], labels_info[str(1)]]) # Signed-r2 ax2.pcolormesh(times, range(2), np.tile(trials_r2[:, i], reps=[2, 1]), cmap='YlOrRd') ax2.axvline(x=0, color='k', linestyle='--', label='_nolegend_') ax2.set_ylabel('$r^2$') ax2.set_xlabel('Time (ms)') figs.append(fig) return figs
[docs]def plot_erd_ers_freq(files, ch_to_plot, features=None, track_info=None, fs=None, lcha=None, channel_set=None, welch_seg_len_pct=50, welch_overlap_pct=75, mov_mean_hz=0, **kwargs): # TODO: More options!... # TODO: Left and right classes labels are hardcoded! """ This function depicts the ERD/ERS events of MI BCIs over the frequency spectrum. Parameters ---------- files: list List of paths pointing to MI files. ch_to_plot: list List with the labels of the channels to plot """ for key, value in kwargs.items(): globals()[key] = value # Extract only if required if features is None: features, track_info, fs, lcha, channel_set, saved_args = \ _extract_erd_ers_features( files, ch_to_plot, **kwargs ) for key, value in saved_args.items(): globals()[key] = value labels = track_info["mi_labels"] # todo: hardcoded labels_info = track_info["mi_labels_info"][0] # Compute the PSD trials_psd = None new_fs = fs if target_fs is None else target_fs for t in features: # Compute PSD of the trial welch_seg_len = np.round(welch_seg_len_pct / 100 * t.shape[0]).astype( int) welch_overlap = np.round( welch_overlap_pct / 100 * welch_seg_len).astype(int) welch_ndft = welch_seg_len t_freqs, t_psd = scisig.welch(t, fs=new_fs, nperseg=welch_seg_len, noverlap=welch_overlap, nfft=welch_ndft, axis=0) # Concatenate t_psd = t_psd.reshape(1, t_psd.shape[0], t_psd.shape[1]) trials_psd = np.concatenate((trials_psd, t_psd), axis=0) if trials_psd is not None else t_psd # Separate the classes trials_psd_c1 = trials_psd[labels == 0, :, :] trials_psd_c2 = trials_psd[labels == 1, :, :] # Signed r2 trials_r2 = statistics.signed_r2(trials_psd_c1, trials_psd_c2, signed=False, axis=0) if mov_mean_hz != 0: size = int( trials_psd_c1.shape[1] / (cutoff[1] - cutoff[0]) * mov_mean_hz) trials_r2 = uniform_filter1d(trials_r2, size, axis=0, mode='nearest') # Mean PSD m_psd_c1 = np.mean(trials_psd_c1, axis=0) m_psd_c2 = np.mean(trials_psd_c2, axis=0) # Plot ranges freqs = np.linspace(0, new_fs / 2, len(m_psd_c1)) lims = [0, new_fs / 2] if btype == 'bandpass': lims = [cutoff[0], cutoff[1]] elif btype == 'highpass': lims[0] = cutoff[0] elif btype == 'lowpass': lims[1] = cutoff[1] # Plot left = 0.1 bottom = 0 width = 0.8 height_psd = 0.6 height_r2 = 0.06 height_cbar = 0.06 gap = 0.12 figs = list() for n in range(len(ch_to_plot)): fig = plt.figure() ax1 = fig.add_axes( [left, bottom + height_r2 + height_cbar + gap, width, height_psd], xticklabels=[]) ax2 = fig.add_axes([left, bottom + height_cbar + gap, width, height_r2], yticklabels=[]) if ch_to_plot[n] not in ch_to_plot: raise ValueError('Channel ' + ch_to_plot[n] + ' is missing!') i = lcha.index(ch_to_plot[n]) # Individual curves # for j in range(trials_psd_c1.shape[0]): # plt.plot(freqs, trials_psd_c1[j,:,i], linewidth=0.5, # color=[255/255, 174/255, 0/255], alpha=0.5) # for j in range(trials_psd_c2.shape[0]): # plt.plot(freqs, trials_psd_c2[j,:,i], linewidth=0.5, # color=[24/255, 255/255, 73/255], alpha=0.5) # Averaged curves ax1.minorticks_on() ax1.grid(b=True, which='minor', color='#ededed', linestyle='--') ax1.grid(b=True, which='major') ax1.plot(freqs, m_psd_c1[:, i], linewidth=2, color=[255 / 255, 174 / 255, 0 / 255]) ax1.plot(freqs, m_psd_c2[:, i], linewidth=2, color=[24 / 255, 255 / 255, 73 / 255]) ax1.set_xlim(lims) ax1.title.set_text(ch_to_plot[n]) ax1.set_ylabel(r'PSD ($uV^2/Hz$)') ax1.legend([labels_info[str(0)], labels_info[str(1)]]) # Signed-r2 ax2.pcolormesh(freqs, range(2), np.tile(trials_r2[:, i], reps=[2, 1]), cmap='YlOrRd', vmin=0) ax2.set_xlim(lims) ax2.set_ylabel('$r^2$') ax2.set_xlabel('Frequency (Hz)') figs.append(fig) return figs
[docs]def plot_r2_topoplot(files, ch_to_plot, features=None, track_info=None, fs=None, lcha=None, channel_set=None, welch_seg_len_pct=50, welch_overlap_pct=75, background=False, **kwargs): for key, value in kwargs.items(): globals()[key] = value # Extract only if required if features is None: features, track_info, fs, lcha, channel_set, saved_args = \ _extract_erd_ers_features( files, ch_to_plot, **kwargs ) for key, value in saved_args.items(): globals()[key] = value labels = track_info["mi_labels"] # todo: hardcoded labels_info = track_info["mi_labels_info"][0] new_fs = fs if target_fs is None else target_fs # Compute the PSD trials_psd = None for t in features: # Compute PSD of the trial welch_seg_len = np.round(welch_seg_len_pct / 100 * t.shape[0]).astype( int) welch_overlap = np.round( welch_overlap_pct / 100 * welch_seg_len).astype(int) welch_ndft = welch_seg_len t_freqs, t_psd = scisig.welch(t, fs=new_fs, nperseg=welch_seg_len, noverlap=welch_overlap, nfft=welch_ndft, axis=0) # Concatenate t_psd = t_psd.reshape(1, t_psd.shape[0], t_psd.shape[1]) trials_psd = np.concatenate((trials_psd, t_psd), axis=0) if trials_psd is not None else t_psd # Separate the classes trials_psd_c1 = trials_psd[labels == 0, :, :] trials_psd_c2 = trials_psd[labels == 1, :, :] # Signed r2 trials_r2 = statistics.signed_r2(trials_psd_c1, trials_psd_c2, signed=True, axis=0) trials_r2 = np.mean(trials_r2, axis=0) # Topoplot values = trials_r2.reshape(1, len(lcha)) fig, _, _ = topographic_plots.plot_topography(channel_set, values, cmap='RdBu', background=background, show=False) return fig