Source code for medusa.connectivity.phase_connectivity

"""
In this module you will find useful functions to apply optimized phase-based
connectivity metrics. Enjoy!

@authors: Víctor Rodríguez-González and Diego Marcos-Martínez
"""

# Built-in imports
import warnings

# External imports
import scipy.signal as sp_signal
import numpy as np
import tensorflow as tf

# Medusa imports
from medusa import transforms
from medusa.utils import check_dimensions


def __phase_connectivity_cpu(data, measure=None):
    """ This method implements three phase-based connectivity parameters using
    CPU: PLV, PLI, and wPLI.

    Parameters
    ----------
    data : numpy 2D matrix
        MEEG Signal. Allowed dimensions: [n_epochs, n_samples, n_channels],
        [n_samples, n_channels].
    measure: str or None
        Key of the phase connectivity measure to calculate: "plv", "pli" or
        "wpli". If None, the three phase connectivity measures are calculated.

    Returns
    -------
    plv : numpy 3D square matrix
        plv-based connectivity matrix. [n_epochs, n_channels x n_channels].
    pli : numpy 3D square matrix
        pli-based connectivity matrix. [n_epochs, n_channels x n_channels].
    wpli : numpy 3D square matrix
        wpli-based connectivity matrix. [n_epochs, n_channels x n_channels].

    """
    # Error check
    if type(data) != np.ndarray:
        raise ValueError("Parameter data must be of type numpy.ndarray")

    # Set to correct dimensions
    data = check_dimensions(data)

    # Variable initialization
    n_epochs = data.shape[0]
    n_samples = data.shape[1]
    n_chan = data.shape[2]

    # Connectivity computation
    phase_data = np.angle(transforms.hilbert(data))
    phase_data = np.ascontiguousarray(phase_data)
    angles_1 = np.reshape(np.tile(phase_data, (1, n_chan, 1)),
                          (n_epochs, n_samples, n_chan * n_chan),
                          order='F')
    angles_2 = np.tile(phase_data, (1, 1, n_chan))

    if measure == 'pli':
        return __pli(angles_1, angles_2, n_epochs, n_chan, 'CPU')
    elif measure == 'wpli':
        return __wpli(angles_1, angles_2, n_epochs, n_chan, 'CPU')
    elif measure == 'plv':
        return __plv(angles_1, angles_2, n_epochs, n_chan, 'CPU')
    else:
        plv = __plv(angles_1, angles_2, n_epochs, n_chan, 'CPU')
        pli = __pli(angles_1, angles_2, n_epochs, n_chan, 'CPU')
        wpli = __wpli(angles_1, angles_2, n_epochs, n_chan, 'CPU')
        return plv, pli, wpli


def __phase_connectivity_gpu(data, measure=None):
    """ This method implements three phase-based connectivity parameters using
    GPU: PLV, PLI, and wPLI.

    Parameters
    ----------
    data : numpy.ndarray
        MEEG Signal. Allowed dimensions: [n_epochs, n_samples, n_channels] and
        [n_samples, n_channels].
    measure: str or None
        Key of the phase connectivity measure to calculate: "plv", "pli" or
        "wpli". If None, the three phase connectivity measures are calculated.

    Returns
    -------
    plv : numpy 3D square matrix
        plv-based connectivity matrix. [n_epochs, n_channels, n_channels].
    pli : numpy 3D square matrix
        pli-based connectivity matrix. [n_epochs, n_channels, n_channels].
    wpli : numpy 3D square matrix
        wpli-based connectivity matrix. [n_epochs, n_channels, n_channels].

    """
    import tensorflow as tf
    # Error check
    if type(data) != np.ndarray:
        raise ValueError("Parameter data must be of type numpy.ndarray")

    # Set to correct dimensions
    data = check_dimensions(data)

    # Variable initialization
    n_epochs = data.shape[0]
    n_samples = data.shape[1]
    n_chan = data.shape[2]

    # Connectivity computation
    phase_data = tf.math.angle(transforms.hilbert(data))

    angles_1 = tf.transpose(tf.reshape(
        tf.transpose(tf.tile(phase_data, (1, n_chan, 1)),
                     perm=[0, 2, 1]),
        (n_epochs, n_chan * n_chan, n_samples)), perm=[0, 2, 1])

    angles_2 = tf.tile(phase_data, (1, 1, n_chan))

    if measure == 'pli':
        return __pli(angles_1, angles_2, n_epochs, n_chan, 'GPU')
    elif measure == 'wpli':
        return __wpli(angles_1, angles_2, n_epochs, n_chan, 'GPU')
    elif measure == 'plv':
        return __plv(angles_1, angles_2, n_epochs, n_samples, n_chan, 'GPU')
    else:
        plv = __plv(angles_1, angles_2, n_epochs, n_samples, n_chan, 'GPU')
        pli = __pli(angles_1, angles_2, n_epochs, n_chan, 'GPU')
        wpli = __wpli(angles_1, angles_2, n_epochs, n_chan, 'GPU')
        return plv, pli, wpli


def __plv(angles_1, angles_2, n_epochs, n_samples, n_chan, ctype='CPU'):
    """ This auxiliary method implements both CPU and GPU PLV calculations"""
    if ctype == 'CPU':
        plv_vector = np.divide(
            abs(np.sum(np.exp(1j * (angles_1 - angles_2)), axis=1)),
            n_samples)
        plv = np.reshape(plv_vector, (n_epochs, n_chan, n_chan), order='F')
    elif ctype == 'GPU':
        plv_vector = tf.math.divide(
            tf.math.abs(
                tf.math.reduce_sum(
                    tf.math.exp(
                        tf.math.scalar_mul(
                            1j,
                            tf.cast(
                                tf.math.subtract(angles_1, angles_2),
                                'complex64'))),
                    axis=1)),
            n_samples)
        plv = tf.reshape(plv_vector, (n_epochs, n_chan, n_chan))
    return plv


def __pli(angles_1, angles_2, n_epochs, n_chan, ctype='CPU'):
    """ This auxiliary method implements both CPU and GPU PLI calculations"""
    if ctype == 'CPU':
        pli_vector = abs(np.mean(np.sign(np.sin(angles_1 - angles_2)), axis=1))
        pli = np.reshape(pli_vector, (n_epochs, n_chan, n_chan), order='F')
    elif ctype == 'GPU':
        pli_vector = tf.math.abs(
            tf.math.reduce_mean(
                tf.math.sign(
                    tf.math.sin(tf.math.subtract(angles_1, angles_2))),
                axis=1))
        pli = tf.reshape(pli_vector, (n_epochs, n_chan, n_chan))
    return pli


def __wpli(angles_1, angles_2, n_epochs, n_chan, ctype='CPU'):
    """ This auxiliary method implements both CPU and GPU wPLI calculations"""
    if ctype == 'CPU':
        imz = np.sin(angles_1 - angles_2)
        with np.errstate(divide='ignore', invalid='ignore'):
            wpli_vector = np.divide(
                abs(np.mean(np.multiply(abs(imz), np.sign(imz)), axis=1)),
                np.mean(abs(imz), axis=1)
            )
        wpli = np.reshape(wpli_vector, (n_epochs, n_chan, n_chan), order='F')
    elif ctype == 'GPU':
        imz = tf.math.sin(tf.math.subtract(angles_1, angles_2))
        wpli_vector = tf.math.divide(
            tf.math.abs(tf.math.reduce_mean(
                tf.math.multiply(
                    tf.math.abs(imz),
                    tf.math.sign(imz)),
                axis=1)),
            tf.math.reduce_mean(tf.math.abs(imz), axis=1))
        wpli = tf.reshape(wpli_vector, (n_epochs, n_chan, n_chan))

    wpli = tf.linalg.set_diag(wpli, np.zeros((wpli.shape[0], wpli.shape[1])))
    return wpli


[docs]def phase_connectivity(data, measure=None): """ This method implements three phase-based connectivity parameters: PLV, PLI, and wPLI. REFERENCES: PLV: Mormann, F., Lehnertz, K., David, P., & Elger, C. E. (2000). Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D: Nonlinear Phenomena, 144(3-4), 358-369. PLI: Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., & Hallett, M. (2004). Identifying true brain interaction from EEG data using the imaginary part of coherency. Clinical neurophysiology, 115(10), 2292-2307. wPLI: Vinck, M., Oostenveld, R., Van Wingerden, M., Battaglia, F., & Pennartz, C. M. (2011). An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage, 55(4), 1548-1565. NOTE: PLV is sensitive to volume conduction effects Parameters ---------- data : numpy matrix MEEG Signal. Allowed dimensions: [n_epochs, n_samples, n_channels], [n_samples, n_channels]. measure: str or None Key of the phase connectivity measure to calculate: "plv", "pli" or "wpli". If None, the three phase connectivity measures are calculated. Returns ------- plv : numpy 3D square matrix plv-based connectivity matrix. [n_epochs, n_channels, n_channels]. pli : numpy 3D square matrix pli-based connectivity matrix. [n_epochs, n_channels, n_channels]. wpli : numpy 3D square matrix wpli-based connectivity matrix. [n_epochs, n_channels, n_channels]. """ from medusa import tensorflow_integration # Error check if not np.issubdtype(data.dtype, np.number): raise ValueError('data matrix contains non-numeric values') if measure is not None and (measure != 'plv' and measure != 'pli' and measure != 'wpli'): raise ValueError('Unknown measure key. Available are: "plv", "pli" or' '"wpli".') if tensorflow_integration.check_tf_config(autoconfig=True): if measure is None: plv, pli, wpli, = __phase_connectivity_gpu(data, measure) return np.asarray(plv), np.asarray(pli), np.asarray(wpli) else: ph_cnn_measure = __phase_connectivity_gpu(data, measure) return np.asarray(ph_cnn_measure) else: if measure is None: plv, pli, wpli, = __phase_connectivity_cpu(data, measure) return np.asarray(plv), np.asarray(pli), np.asarray(wpli) else: ph_cnn_measure = __phase_connectivity_cpu(data, measure) return np.asarray(ph_cnn_measure)