"""
In this module you will find useful functions to apply optimized phase-based
connectivity metrics. Enjoy!
@authors: Víctor Rodríguez-González and Diego Marcos-Martínez
"""
# Built-in imports
import warnings
# External imports
import scipy.signal as sp_signal
import numpy as np
import tensorflow as tf
# Medusa imports
from medusa import transforms
from medusa.utils import check_dimensions
def __phase_connectivity_cpu(data, measure=None):
""" This method implements three phase-based connectivity parameters using
CPU: PLV, PLI, and wPLI.
Parameters
----------
data : numpy 2D matrix
MEEG Signal. Allowed dimensions: [n_epochs, n_samples, n_channels],
[n_samples, n_channels].
measure: str or None
Key of the phase connectivity measure to calculate: "plv", "pli" or
"wpli". If None, the three phase connectivity measures are calculated.
Returns
-------
plv : numpy 3D square matrix
plv-based connectivity matrix. [n_epochs, n_channels x n_channels].
pli : numpy 3D square matrix
pli-based connectivity matrix. [n_epochs, n_channels x n_channels].
wpli : numpy 3D square matrix
wpli-based connectivity matrix. [n_epochs, n_channels x n_channels].
"""
# Error check
if type(data) != np.ndarray:
raise ValueError("Parameter data must be of type numpy.ndarray")
# Set to correct dimensions
data = check_dimensions(data)
# Variable initialization
n_epochs = data.shape[0]
n_samples = data.shape[1]
n_chan = data.shape[2]
# Connectivity computation
phase_data = np.angle(transforms.hilbert(data))
phase_data = np.ascontiguousarray(phase_data)
angles_1 = np.reshape(np.tile(phase_data, (1, n_chan, 1)),
(n_epochs, n_samples, n_chan * n_chan),
order='F')
angles_2 = np.tile(phase_data, (1, 1, n_chan))
if measure == 'pli':
return __pli(angles_1, angles_2, n_epochs, n_chan, 'CPU')
elif measure == 'wpli':
return __wpli(angles_1, angles_2, n_epochs, n_chan, 'CPU')
elif measure == 'plv':
return __plv(angles_1, angles_2, n_epochs, n_chan, 'CPU')
else:
plv = __plv(angles_1, angles_2, n_epochs, n_chan, 'CPU')
pli = __pli(angles_1, angles_2, n_epochs, n_chan, 'CPU')
wpli = __wpli(angles_1, angles_2, n_epochs, n_chan, 'CPU')
return plv, pli, wpli
def __phase_connectivity_gpu(data, measure=None):
""" This method implements three phase-based connectivity parameters using
GPU: PLV, PLI, and wPLI.
Parameters
----------
data : numpy.ndarray
MEEG Signal. Allowed dimensions: [n_epochs, n_samples, n_channels] and
[n_samples, n_channels].
measure: str or None
Key of the phase connectivity measure to calculate: "plv", "pli" or
"wpli". If None, the three phase connectivity measures are calculated.
Returns
-------
plv : numpy 3D square matrix
plv-based connectivity matrix. [n_epochs, n_channels, n_channels].
pli : numpy 3D square matrix
pli-based connectivity matrix. [n_epochs, n_channels, n_channels].
wpli : numpy 3D square matrix
wpli-based connectivity matrix. [n_epochs, n_channels, n_channels].
"""
import tensorflow as tf
# Error check
if type(data) != np.ndarray:
raise ValueError("Parameter data must be of type numpy.ndarray")
# Set to correct dimensions
data = check_dimensions(data)
# Variable initialization
n_epochs = data.shape[0]
n_samples = data.shape[1]
n_chan = data.shape[2]
# Connectivity computation
phase_data = tf.math.angle(transforms.hilbert(data))
angles_1 = tf.transpose(tf.reshape(
tf.transpose(tf.tile(phase_data, (1, n_chan, 1)),
perm=[0, 2, 1]),
(n_epochs, n_chan * n_chan, n_samples)), perm=[0, 2, 1])
angles_2 = tf.tile(phase_data, (1, 1, n_chan))
if measure == 'pli':
return __pli(angles_1, angles_2, n_epochs, n_chan, 'GPU')
elif measure == 'wpli':
return __wpli(angles_1, angles_2, n_epochs, n_chan, 'GPU')
elif measure == 'plv':
return __plv(angles_1, angles_2, n_epochs, n_samples, n_chan, 'GPU')
else:
plv = __plv(angles_1, angles_2, n_epochs, n_samples, n_chan, 'GPU')
pli = __pli(angles_1, angles_2, n_epochs, n_chan, 'GPU')
wpli = __wpli(angles_1, angles_2, n_epochs, n_chan, 'GPU')
return plv, pli, wpli
def __plv(angles_1, angles_2, n_epochs, n_samples, n_chan, ctype='CPU'):
""" This auxiliary method implements both CPU and GPU PLV calculations"""
if ctype == 'CPU':
plv_vector = np.divide(
abs(np.sum(np.exp(1j * (angles_1 - angles_2)), axis=1)),
n_samples)
plv = np.reshape(plv_vector, (n_epochs, n_chan, n_chan), order='F')
elif ctype == 'GPU':
plv_vector = tf.math.divide(
tf.math.abs(
tf.math.reduce_sum(
tf.math.exp(
tf.math.scalar_mul(
1j,
tf.cast(
tf.math.subtract(angles_1, angles_2),
'complex64'))),
axis=1)),
n_samples)
plv = tf.reshape(plv_vector, (n_epochs, n_chan, n_chan))
return plv
def __pli(angles_1, angles_2, n_epochs, n_chan, ctype='CPU'):
""" This auxiliary method implements both CPU and GPU PLI calculations"""
if ctype == 'CPU':
pli_vector = abs(np.mean(np.sign(np.sin(angles_1 - angles_2)), axis=1))
pli = np.reshape(pli_vector, (n_epochs, n_chan, n_chan), order='F')
elif ctype == 'GPU':
pli_vector = tf.math.abs(
tf.math.reduce_mean(
tf.math.sign(
tf.math.sin(tf.math.subtract(angles_1, angles_2))),
axis=1))
pli = tf.reshape(pli_vector, (n_epochs, n_chan, n_chan))
return pli
def __wpli(angles_1, angles_2, n_epochs, n_chan, ctype='CPU'):
""" This auxiliary method implements both CPU and GPU wPLI calculations"""
if ctype == 'CPU':
imz = np.sin(angles_1 - angles_2)
with np.errstate(divide='ignore', invalid='ignore'):
wpli_vector = np.divide(
abs(np.mean(np.multiply(abs(imz), np.sign(imz)), axis=1)),
np.mean(abs(imz), axis=1)
)
wpli = np.reshape(wpli_vector, (n_epochs, n_chan, n_chan), order='F')
elif ctype == 'GPU':
imz = tf.math.sin(tf.math.subtract(angles_1, angles_2))
wpli_vector = tf.math.divide(
tf.math.abs(tf.math.reduce_mean(
tf.math.multiply(
tf.math.abs(imz),
tf.math.sign(imz)),
axis=1)),
tf.math.reduce_mean(tf.math.abs(imz), axis=1))
wpli = tf.reshape(wpli_vector, (n_epochs, n_chan, n_chan))
wpli = tf.linalg.set_diag(wpli, np.zeros((wpli.shape[0], wpli.shape[1])))
return wpli
[docs]def phase_connectivity(data, measure=None):
""" This method implements three phase-based connectivity parameters: PLV,
PLI, and wPLI.
REFERENCES:
PLV: Mormann, F., Lehnertz, K., David, P., & Elger, C. E.
(2000). Mean phase coherence as a measure for phase synchronization and its
application to the EEG of epilepsy patients. Physica D: Nonlinear Phenomena,
144(3-4), 358-369.
PLI: Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., & Hallett, M.
(2004). Identifying true brain interaction from EEG data using the imaginary
part of coherency. Clinical neurophysiology, 115(10), 2292-2307.
wPLI: Vinck, M., Oostenveld, R., Van Wingerden, M., Battaglia, F., &
Pennartz, C. M. (2011). An improved index of phase-synchronization for
electrophysiological data in the presence of volume-conduction, noise and
sample-size bias. Neuroimage, 55(4), 1548-1565.
NOTE: PLV is sensitive to volume conduction effects
Parameters
----------
data : numpy matrix
MEEG Signal. Allowed dimensions: [n_epochs, n_samples, n_channels],
[n_samples, n_channels].
measure: str or None
Key of the phase connectivity measure to calculate: "plv", "pli" or
"wpli". If None, the three phase connectivity measures are calculated.
Returns
-------
plv : numpy 3D square matrix
plv-based connectivity matrix. [n_epochs, n_channels, n_channels].
pli : numpy 3D square matrix
pli-based connectivity matrix. [n_epochs, n_channels, n_channels].
wpli : numpy 3D square matrix
wpli-based connectivity matrix. [n_epochs, n_channels, n_channels].
"""
from medusa import tensorflow_integration
# Error check
if not np.issubdtype(data.dtype, np.number):
raise ValueError('data matrix contains non-numeric values')
if measure is not None and (measure != 'plv' and measure != 'pli' and measure
!= 'wpli'):
raise ValueError('Unknown measure key. Available are: "plv", "pli" or'
'"wpli".')
if tensorflow_integration.check_tf_config(autoconfig=True):
if measure is None:
plv, pli, wpli, = __phase_connectivity_gpu(data, measure)
return np.asarray(plv), np.asarray(pli), np.asarray(wpli)
else:
ph_cnn_measure = __phase_connectivity_gpu(data, measure)
return np.asarray(ph_cnn_measure)
else:
if measure is None:
plv, pli, wpli, = __phase_connectivity_cpu(data, measure)
return np.asarray(plv), np.asarray(pli), np.asarray(wpli)
else:
ph_cnn_measure = __phase_connectivity_cpu(data, measure)
return np.asarray(ph_cnn_measure)