Source code for medusa.plots.topographic_plots

import numpy as np
import scipy.interpolate as sp
import matplotlib.pyplot as plt
from medusa.spatial_filtering import LaplacianFilter


[docs]def plot_topography(channel_set, values=None, head_radius=0.7266, plot_extra=0.29, k=3, make_contour=True, plot_channels=True, plot_skin_in_color=False, plot_clabels=False, plot_contour_ch=False, chcontour_radius=None, interp_points=500, cmap='YlGnBu_r', show=True, clim=None): """The function 'plot_topography' depicts a topographical map of the scalp over the desired channel locations. Parameters ---------- channel_set : eeg_standards.EEGChannelSet EEG channel set according of class eeg_standards.EEGChannelSet values: list or numpy.ndarray or None Numpy array with the channel values. It must be of the same size as channels. If None value, the function only returns a plot of the head and the channels head_radius : float Head radius. Default is 0.7266, coinciding with FPz. The nasion and inion are located at r=1.0 plot_extra : float Extra radius of the plot surface k : int Number of nearest neighbors for interpolation make_contour: bool (Optional) Boolean that controls if the contour lines should be plotted (default: True) plot_channels: bool (Optional) Boolean that controls if the channel points should be plotted (default: True) plot_skin_in_color: bool (Optional) Boolean that controls if the skin of the head should be coloured (default: False) plot_clabels: bool (Optional) Boolean that controls if the channel labels should be plotted (default: False) plot_contour_ch: bool (Optional) Boolean that controls if a contour around each channel should be plotted (default: False) chcontour_radius: float or None Radius of the channel contour if plot_contour_ch is set True. If None value, an automatic value is computed, considering the minimum distance between channels (default: None) interp_points: int (Optional) No. interpolation points. The lower N, the lower resolution and faster computation (default: 500) cmap : str Matplotlib colormap show : bool Show matplotlib figure clim : list or None Color bar limits. Index 0 contain the lower limit, whereas index 1 must contain the upper limit. if none, min and max values are used Returns ------- figure : plt.figure Figure with the topography plot """ # Check channels errors if channel_set.dim != '2D': raise ValueError('The channel set must have 2 dimensions') if channel_set.coord_system != 'spherical': raise ValueError('The channel set must have polar coordinates') # Check values dimensions channels = channel_set.channels if values is not None: values = np.array(values) if values.size != len(channels): raise Exception('Parameters ch_list and values must have the same size') if len(values.shape) == 1: # Reshape to the correct dimensions [1 x len(ch_list)] values = values.reshape(1, -1) elif len(values.shape) == 2: # Reshape to the correct dimensions [1 x len(ch_list)] values = np.squeeze(values).reshape(1, -1) else: raise Exception('The dimensions of the parameter are not correct') # Initialize figure and axis fig = plt.figure() axes = fig.add_subplot(111) # Restructure the channels list to treat it more easily radius = np.array([c['r'] for c in channels]) theta = np.array([c['theta'] for c in channels]) # labels = [c['label'] for c in channels] # Compute the cartesian coordinates of each channel ch_x, ch_y = pol2cart(radius, theta) if values is not None: # Create points out of the head to get a natural interpolation r_ext_points = 1.5 # Radius of the virtual electrodes no_ve = 16 # No. virtual electrodes add_x, add_y = pol2cart(r_ext_points * np.ones((1, no_ve)), np.arange(0, 2 * np.pi, 2 * np.pi / no_ve)) linear_grid = np.linspace(-r_ext_points, r_ext_points, interp_points) interp_x, interp_y = np.meshgrid(linear_grid, linear_grid) # Create the mask # outer_rho = np.max(radius) # mask_radius = outer_rho + head_extra if outer_rho > head_radious else # head_radious mask_radius = np.max(radius) + plot_extra mask = (np.sqrt(np.power(interp_x, 2) + np.power(interp_y, 2)) < mask_radius) # Interpolate the data ch_x = ch_x.reshape(ch_x.shape[0], 1) ch_y = ch_y.reshape(ch_y.shape[0], 1) add_values = compute_nearest_values(np.hstack((add_x.T, add_y.T)), np.hstack((ch_x, ch_y)), values, k) grid_points = np.hstack((np.vstack((ch_x, add_x.T)), np.vstack((ch_y, add_y.T)))) grid_values = np.vstack((values.T, add_values)) interp_values = np.vstack((interp_x.ravel(), interp_y.ravel())).T interp_z = sp.griddata(grid_points, grid_values, interp_values, 'cubic') # Mask the data interp_z = np.reshape(interp_z, (interp_points, interp_points)) interp_z[~mask] = float('nan') # Plotting the final interpolation p_interp = plt.pcolor(interp_x, interp_y, interp_z, cmap=cmap) if clim is not None: plt.clim(clim[0], clim[1]) cbar = plt.colorbar(p_interp) # Plotting the contour if make_contour: axes.contour(interp_x, interp_y, interp_z, alpha=1, colors='0.2', linewidths=0.75) # Plotting the nose head_rho = head_radius nt = 0.15 # Half-nose width (in percentage of pi/2) nr = 0.22 # Nose length (in radius units) nose_rho = [head_rho, head_rho + head_rho * nr, head_rho] nose_theta = [(np.pi / 2) + (nt * np.pi / 2), np.pi / 2, (np.pi / 2) - (nt * np.pi / 2)] nose_x = nose_rho * np.cos(nose_theta) nose_y = nose_rho * np.sin(nose_theta) axes.plot(nose_x, nose_y, 'k', linewidth=4) if plot_skin_in_color: axes.fill(nose_x, nose_y, 'k', facecolor='#E8BEAC', edgecolor='k', linewidth=4) # Plotting the ears as ellipses ellipse_a = 0.08 # Horizontal eccentricity ellipse_b = 0.16 # Vertical eccentricity ear_angle = 0.9 * np.pi / 8 # Mask angle offset = 0.058 * head_radius # Ear offset ear_theta_right = np.linspace(-np.pi / 2 - ear_angle, np.pi / 2 + ear_angle, interp_points) ear_theta_left = np.linspace(np.pi / 2 - ear_angle, 3 * np.pi / 2 + ear_angle, interp_points) ear_x_right = ear_rho(ear_theta_right, ellipse_a, ellipse_b) * \ np.cos(ear_theta_right) ear_y_right = ear_rho(ear_theta_right, ellipse_a, ellipse_b) * \ np.sin(ear_theta_right) ear_x_left = ear_rho(ear_theta_left, ellipse_a, ellipse_b) * \ np.cos(ear_theta_left) ear_y_left = ear_rho(ear_theta_left, ellipse_a, ellipse_b) * \ np.sin(ear_theta_left) axes.plot(ear_x_right + head_rho + offset, ear_y_right, 'k', linewidth=4) axes.plot(ear_x_left - head_rho - offset, ear_y_left, 'k', linewidth=4) # Plotting the head limits as a circle head_theta = np.linspace(0, 2 * np.pi, interp_points) head_x = head_rho * np.cos(head_theta) head_y = head_rho * np.sin(head_theta) axes.plot(head_x, head_y, 'k', linewidth=4) if plot_skin_in_color: axes.fill(head_x, head_y, facecolor='#E8BEAC', edgecolor='k', linewidth=4) if plot_skin_in_color: axes.fill(ear_x_right + head_rho + offset, ear_y_right, facecolor='#E8BEAC', edgecolor='k', linewidth=4) axes.fill(ear_x_left - head_rho - offset, ear_y_left, facecolor='#E8BEAC', edgecolor='k', linewidth=4) # Plot a contour around electrodes if plot_contour_ch: if chcontour_radius is None: dist_matrix = channel_set.compute_dist_matrix() dist_matrix.sort() min_dist = dist_matrix[:, 1].min() else: min_dist = chcontour_radius for ch_idx in range(len(channels)): axes.add_patch(plt.Circle((ch_x[ch_idx], ch_y[ch_idx]), radius=min_dist, facecolor='#ffffff', edgecolor=None, alpha=0.4, zorder=10)) # Plotting the electrodes if plot_channels: axes.scatter(ch_x, ch_y, 15, facecolors='w', edgecolors='k', zorder=10) if plot_clabels: for t in range(len(channels)): axes.text(ch_x[t] + 0.01, ch_y[t] - 0.85 * min_dist, channels[t]['label'], fontsize=9,color = 'w', zorder = 11) # Last considerations plot_lim = max(head_radius + 0.2, np.max(radius) + 0.2) axes.set_xlim([-plot_lim, plot_lim]) axes.set_ylim([-plot_lim, plot_lim]) axes.set_aspect('equal', 'box') plt.axis('off') # fig = plt.gcf() fig.patch.set_alpha(0.0) # Set transparent background fig.tight_layout() if show is True: plt.show() return fig, axes
[docs]def ear_rho(ear_theta, ellipse_a, ellipse_b): """ This function computes the ear coordinates according to an ellipse. """ d1 = np.power(np.cos(ear_theta), 2) / np.power(ellipse_a, 2) d2 = np.power(np.sin(ear_theta), 2) / np.power(ellipse_b, 2) return 1 / np.sqrt(d1 + d2)
[docs]def pol2cart(rho, phi): """This function converts polar coordinates to cartesian coordinates. Parameters ---------- rho: Array of radii phi: Array of angles """ x = rho * np.cos(phi) y = rho * np.sin(phi) return x, y
[docs]def compute_nearest_values(coor_add, coor_neigh, val_neigh, k): """ This function computes the mean values of the k-nearest neighbors. Parameters ---------- coor_add: XY coordinates of the virtual electrodes. coor_neigh: XY coordinates of the real electrodes. val_neigh: Values of the real electrodes. k: Number of neighbors to consider. """ add_val = np.empty((len(coor_add), 1)) L = len(coor_add) for i in range(L): # Distances between the added electrode and the original ones target = coor_add[i, :] * np.ones((len(coor_neigh), 2)) d = np.sqrt(np.sum(np.power(target - coor_neigh, 2), axis=1)) # K-nearest neighbors idx = np.argsort(d) sel_idx = idx[1:1 + k] # Final value as the mean value of the k-nearest neighbors add_val[i] = np.mean(val_neigh[0, sel_idx]) return add_val