Source code for medusa.plots.mi_plots

# -*- coding: utf-8 -*-
"""
Created on Fri Dec 20 15:34:18 2019
Edited on Mon Jun 13 10:00:00 2022

@author: VICTOR
@editor: Sergio Pérez-Velasco
"""
from medusa import frequency_filtering as ff
from medusa import spatial_filtering as sf
# from medusa.storage.medusa_data import MedusaData
from medusa.components import Recording
# from medusa.bci.mi_feat_extraction import extract_mi_trials_from_midata
from medusa.local_activation import statistics
# from medusa.bci.mi_models import MIModelSettings
from medusa.plots import topographic_plots
from medusa.bci.mi_paradigms import StandardPreprocessing, \
    StandardFeatureExtraction, MIDataset

import numpy as np
from scipy.ndimage import uniform_filter1d
import matplotlib.pyplot as plt
import scipy.signal as scisig


[docs]def plot_erd_ers_time(files, ch_to_plot, order=5, cutoff=[5, 35], btype='bandpass', temp_filt_method='sosfiltfilt', w_epoch_t=(-1000, 6000), target_fs=128, baseline_mode='trial', w_baseline_t=(-1000, 0), norm='z', mov_mean_ms=1000, show=True): """Plotting function of ERD/ERS from motor imagery runs of MEDUSA. Parameters ---------- files: list List of paths pointing to MI files. ch_to_plot: list List with the labels of the channels to plot """ # Common processing rec = Recording.load(files[0]) channel_set = rec.eeg.channel_set dataset = MIDataset(channel_set=channel_set, fs=rec.eeg.fs, biosignal_att_key='eeg', experiment_mode='train') for file in files: dataset.add_recordings(Recording.load(file)) fs = rec.eeg.fs preprocessing = StandardPreprocessing(order=order, cutoff=cutoff, btype=btype, temp_filt_method=temp_filt_method) preprocessing.fit(fs=fs) dataset = preprocessing.fit_transform_dataset(dataset=dataset) feature_extractor = StandardFeatureExtraction(w_epoch_t=w_epoch_t, target_fs=target_fs, baseline_mode=baseline_mode, w_baseline_t=w_baseline_t, norm=norm) features, track_info = feature_extractor.transform_dataset(dataset=dataset) lcha = dataset.channel_set.l_cha labels = track_info["mi_labels"] # # Baseline parameters t_baseline = [w_baseline_t[0] - w_epoch_t[0], w_baseline_t[1] - w_epoch_t[0]] idx_baseline = np.round(np.array(t_baseline) * target_fs / 1000).astype(int) # Separate the classes trials_c1 = features[labels == 0, :, :] trials_c2 = features[labels == 1, :, :] # Compute the average power p_c1 = np.power(trials_c1, 2) p_c2 = np.power(trials_c2, 2) p_c1_avg = np.mean(p_c1, axis=0) p_c2_avg = np.mean(p_c2, axis=0) # Compute the reference power for each channel r_c1_mean = np.mean(p_c1_avg[idx_baseline[0]:idx_baseline[1], :], axis=0) r_c2_mean = np.mean(p_c2_avg[idx_baseline[0]:idx_baseline[1], :], axis=0) # Compute ERD/ERS ERDERS_c1 = 100 * (p_c1_avg - r_c1_mean) / r_c1_mean ERDERS_c2 = 100 * (p_c2_avg - r_c2_mean) / r_c2_mean #TODO: Cambiar por https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.uniform_filter1d.html ERDERS_c1_smooth = uniform_filter1d(ERDERS_c1, int(np.floor(mov_mean_ms * fs / 1000)), axis=0, mode='mirror') ERDERS_c2_smooth = uniform_filter1d(ERDERS_c2, int(np.floor(mov_mean_ms * fs / 1000)), axis=0, mode='mirror') # Signed r2 for the power p_c1_marg = 100 * (p_c1 - r_c1_mean / p_c1.shape[0]) / r_c1_mean p_c2_marg = 100 * (p_c2 - r_c2_mean / p_c2.shape[0]) / r_c2_mean trials_r2 = statistics.signed_r2(p_c1_marg, p_c2_marg, signed=False, axis=0) if mov_mean_ms != 0: trials_r2 = uniform_filter1d(trials_r2, int(np.floor(mov_mean_ms * fs / 1000)), axis=0, mode='mirror') # Plotting times = np.linspace(w_epoch_t[0], w_epoch_t[1], ERDERS_c1_smooth.shape[0]) # Plot left = 0.1 bottom = 0 width = 0.8 height_psd = 0.6 height_r2 = 0.06 height_cbar = 0.06 gap = 0.12 figs = list() for n in range(len(ch_to_plot)): fig = plt.figure() ax1 = fig.add_axes([left, bottom + height_r2 + height_cbar + gap, width, height_psd], xticklabels=[]) ax2 = fig.add_axes([left, bottom + height_cbar + gap, width, height_r2], yticklabels=[]) if ch_to_plot[n] not in ch_to_plot: raise ValueError('Channel ' + ch_to_plot[n] + ' is missing!') i = lcha.index(ch_to_plot[n]) # ERD/ERS(%) ax1.minorticks_on() ax1.grid(visible=True, which='minor', color='#ededed', linestyle='--') ax1.grid(visible=True, which='major') ax1.axvline(x=0, color='k', linestyle='--', label='_nolegend_') ax1.axvspan(w_baseline_t[0], w_baseline_t[1], alpha=0.1, facecolor='gray', label='_nolegend_') ax1.plot(times, ERDERS_c1_smooth[:, i], linewidth=2, color=[255 / 255, 174 / 255, 0 / 255]) ax1.plot(times, ERDERS_c2_smooth[:, i], linewidth=2, color=[24 / 255, 255 / 255, 73 / 255]) ax1.set_xlim(w_epoch_t) ax1.title.set_text(ch_to_plot[n]) ax1.set_ylabel(r'ERD/ERS (%)') ax1.legend(['Left', 'Right']) # Signed-r2 ax2.pcolormesh(times, range(2), np.tile(trials_r2[:, i], reps=[2, 1]), cmap='YlOrRd') ax2.axvline(x=0, color='k', linestyle='--', label='_nolegend_') ax2.set_ylabel('$r^2$') ax2.set_xlabel('Time (ms)') figs.append(fig) if show is True: plt.show() return figs
[docs]def plot_erd_ers_freq(files, ch_to_plot, order=5, cutoff=[5, 35], btype='bandpass', temp_filt_method='sosfiltfilt', w_epoch_t=(-1000, 6000), target_fs=128, baseline_mode='trial', w_baseline_t=(-1000, 0), norm='z', mov_mean_hz=0, welch_seg_len_pct=50, welch_overlap_pct=75, show=True): # TODO: More options!... # TODO: Left and right classes labels are hardcoded! """ This function depicts the ERD/ERS events of MI BCIs over the frequency spectrum. Parameters ---------- files: list List of paths pointing to MI files. ch_to_plot: list List with the labels of the channels to plot """ # Common processing rec = Recording.load(files[0]) channel_set = rec.eeg.channel_set dataset = MIDataset(channel_set=channel_set, fs=rec.eeg.fs, biosignal_att_key='eeg', experiment_mode='train') for file in files: dataset.add_recordings(Recording.load(file)) fs = rec.eeg.fs preprocessing = StandardPreprocessing(order=order, cutoff=cutoff, btype=btype, temp_filt_method=temp_filt_method) preprocessing.fit(fs=fs) dataset = preprocessing.fit_transform_dataset(dataset=dataset) feature_extractor = StandardFeatureExtraction(w_epoch_t=w_epoch_t, target_fs=target_fs, baseline_mode=baseline_mode, w_baseline_t=w_baseline_t, norm=norm) features, track_info = feature_extractor.transform_dataset(dataset=dataset) lcha = dataset.channel_set.l_cha labels = track_info["mi_labels"] # Compute the PSD trials_psd = None for t in features: # Compute PSD of the trial welch_seg_len = np.round(welch_seg_len_pct / 100 * t.shape[0]).astype(int) welch_overlap = np.round(welch_overlap_pct / 100 * welch_seg_len).astype(int) welch_ndft = welch_seg_len t_freqs, t_psd = scisig.welch(t, fs=target_fs, nperseg=welch_seg_len, noverlap=welch_overlap, nfft=welch_ndft, axis=0) # Concatenate t_psd = t_psd.reshape(1, t_psd.shape[0], t_psd.shape[1]) trials_psd = np.concatenate((trials_psd, t_psd), axis=0) if trials_psd is not None else t_psd # Separate the classes trials_psd_c1 = trials_psd[labels == 0, :, :] trials_psd_c2 = trials_psd[labels == 1, :, :] # Signed r2 trials_r2 = statistics.signed_r2(trials_psd_c1, trials_psd_c2, signed=False, axis=0) if mov_mean_hz != 0: size = int(trials_psd_c1.shape[1] / (cutoff[1]-cutoff[0]) * mov_mean_hz) trials_r2 = uniform_filter1d(trials_r2, size, axis=0, mode='nearest') # Mean PSD m_psd_c1 = np.mean(trials_psd_c1, axis=0) m_psd_c2 = np.mean(trials_psd_c2, axis=0) # Plotting freqs = np.linspace(0, fs / 2, len(m_psd_c1)) # Range to plot lims = [0, target_fs / 2] if btype == 'bandpass': lims = [cutoff[0], cutoff[1]] elif btype == 'highpass': lims = [cutoff[0], target_fs / 2] elif btype == 'lowpass': lims = [0, cutoff[1]] # Plot left = 0.1 bottom = 0 width = 0.8 height_psd = 0.6 height_r2 = 0.06 height_cbar = 0.06 gap = 0.12 figs = list() for n in range(len(ch_to_plot)): fig = plt.figure() ax1 = fig.add_axes([left, bottom + height_r2 + height_cbar + gap, width, height_psd], xticklabels=[]) ax2 = fig.add_axes([left, bottom + height_cbar + gap, width, height_r2], yticklabels=[]) if ch_to_plot[n] not in ch_to_plot: raise ValueError('Channel ' + ch_to_plot[n] + ' is missing!') i = lcha.index(ch_to_plot[n]) # Individual curves # for j in range(trials_psd_c1.shape[0]): # plt.plot(freqs, trials_psd_c1[j,:,i], linewidth=0.5, # color=[255/255, 174/255, 0/255], alpha=0.5) # for j in range(trials_psd_c2.shape[0]): # plt.plot(freqs, trials_psd_c2[j,:,i], linewidth=0.5, # color=[24/255, 255/255, 73/255], alpha=0.5) # Averaged curves ax1.minorticks_on() ax1.grid(b=True, which='minor', color='#ededed', linestyle='--') ax1.grid(b=True, which='major') ax1.plot(freqs, m_psd_c1[:, i], linewidth=2, color=[255 / 255, 174 / 255, 0 / 255]) ax1.plot(freqs, m_psd_c2[:, i], linewidth=2, color=[24 / 255, 255 / 255, 73 / 255]) ax1.set_xlim(lims) ax1.title.set_text(ch_to_plot[n]) ax1.set_ylabel(r'PSD ($uV^2/Hz$)') ax1.legend(['Left', 'Right']) # Signed-r2 ax2.pcolormesh(freqs, range(2), np.tile(trials_r2[:, i], reps=[2, 1]), cmap='YlOrRd', vmin=0) ax2.set_xlim(lims) ax2.set_ylabel('$r^2$') ax2.set_xlabel('Frequency (Hz)') figs.append(fig) if show is True: plt.show() return figs
[docs]def plot_r2_topoplot(files, order=5, cutoff=[5, 35], btype='bandpass', temp_filt_method='sosfiltfilt', w_epoch_t=(-1000, 6000), target_fs=128, baseline_mode='trial', w_baseline_t=(-1000, 0), norm='z', welch_seg_len_pct=50, welch_overlap_pct=75, show=True): # Common processing rec = Recording.load(files[0]) channel_set = rec.eeg.channel_set dataset = MIDataset(channel_set=channel_set, fs=rec.eeg.fs, biosignal_att_key='eeg', experiment_mode='train') for file in files: dataset.add_recordings(Recording.load(file)) fs = rec.eeg.fs preprocessing = StandardPreprocessing(order=order, cutoff=cutoff, btype=btype, temp_filt_method=temp_filt_method) preprocessing.fit(fs=fs) dataset = preprocessing.fit_transform_dataset(dataset=dataset) feature_extractor = StandardFeatureExtraction(w_epoch_t=w_epoch_t, target_fs=target_fs, baseline_mode=baseline_mode, w_baseline_t=w_baseline_t, norm=norm) features, track_info = feature_extractor.transform_dataset(dataset=dataset) lcha = dataset.channel_set.l_cha labels = track_info["mi_labels"] # Compute the PSD trials_psd = None for t in features: # Compute PSD of the trial welch_seg_len = np.round(welch_seg_len_pct / 100 * t.shape[0]).astype(int) welch_overlap = np.round(welch_overlap_pct / 100 * welch_seg_len).astype(int) welch_ndft = welch_seg_len t_freqs, t_psd = scisig.welch(t, fs=fs, nperseg=welch_seg_len, noverlap=welch_overlap, nfft=welch_ndft, axis=0) # Concatenate t_psd = t_psd.reshape(1, t_psd.shape[0], t_psd.shape[1]) trials_psd = np.concatenate((trials_psd, t_psd), axis=0) if trials_psd is not None else t_psd # Separate the classes trials_psd_c1 = trials_psd[labels == 0, :, :] trials_psd_c2 = trials_psd[labels == 1, :, :] # Signed r2 trials_r2 = statistics.signed_r2(trials_psd_c1, trials_psd_c2, signed=True, axis=0) trials_r2 = np.mean(trials_r2, axis=0) # Topoplot values = trials_r2.reshape(1, len(lcha)) fig, _ = topographic_plots.plot_topography(dataset.channel_set, values, cmap='RdBu', show=show) return fig