Source code for medusa.graph_theory.eigen_centrality

import numpy as np


[docs]def eigen_centrality(W): """ Calculates the eigenvector centrality, which is a centrality measure based on the adjacency matrix eigenvectors Parameters ---------- W : numpy 2D matrix Graph matrix. ChannelsXChannels. mode : string GPU or CPU Returns ------- nodal_eig : numpy array Nodal eigenvector centrality """ if W.shape[0] is not W.shape[1]: raise ValueError('W matrix must be square') if not np.issubdtype(W.dtype, np.number): raise ValueError('W matrix contains non-numeric values') N = W.shape[0] # Number of nodes D,V = np.linalg.eig(W) idx = np.where(D == max(D))[0] nodal_eig = abs(V[:,idx]) return nodal_eig
# import scipy.io as rmat # data = rmat.loadmat('D:/OneDrive - Universidad de Valladolid/Scripts/testPython/graphTest.mat') # W = data['W'] # W = np.squeeze(W) # aa = eigen_centrality(W)